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A B S T R A C T 

This paper presents the seismic response analysis of offshore wind turbines sub-
jected to multi-support seismic excitation by using a three dimensional numerical 

finite element model considering viscous boundaries. The sea water-offshore wind 

turbine-soil interaction system is modeled by the Lagrangian (displacement-based) 

fluid and solid-quadrilateral-isoparametric finite elements. The research conducts a 

parametric study to estimate the effects of different foundation soil types on the seis-

mic behavior of the offshore wind turbine coupled interaction system. The results 
obtained for different cases are compared with each other. 
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1. Introduction 

In recent years, because of spending too much energy 
in the world, it needs additional energy. Therefore, the 
wind turbine industry has developed rapidly for sustain-
able energy production. In most regions of the world, 
wind turbines are built on the active earthquake zone. 
Therefore, in order to adequately design, operate, and 
maintain wind turbines, in particular, for sites with high 
peak ground acceleration, it seems necessary to take into 
account earthquakes.  

Seismic analysis of wind turbine subjected to earth-
quake ground motion has been studied and published by 
only a limited number of researchers. Bazeos et al. 
(2002) presented the load bearing capacity and the seis-
mic behavior of a prototype steel tower for a 450 kW 
wind turbine with a horizontal power transmission axle. 
The structure was analyzed for static and seismic loads 
representing the effects of gravity, the operational and 
survival aerodynamic conditions, and possible site-de-
pendent seismic motions by using the finite element 
method.  

Witcher (2005) used an alternative approach to un-
dertake the calculation of seismic response of wind tur-
bine during earthquake ground motion by using the com-
puter software. The software can be used to compute the 

combined wind and earthquake loading of a wind tur-
bine given a definition of the external conditions for an 
appropriate series of load cases. Maißer and Zhao (2006) 
investigated the dynamic responses of wind turbine tow-
ers to seismic excitations in time domain, considering 
soil structure interaction. The soil structure interaction 
was represented by a frequency-independent discrete 
parameter model approximately. The governing motion 
equations were derived by the application of Lagrange 
formalism including Lagrange multipliers. 

The current research investigates the effects of differ-
ent soil properties on the stochastic response of offshore 
wind turbine for random seismic excitation. All the nu-
merical analyses are performed using computer pro-
gram ANSYS (2003). 

 

2. Lagrange Approach for Fluid Systems 

The formulation of the fluid system is presented ac-
cording to the Lagrangian approach (Wilson and Khal-
vati, 1983). In this approach, fluid is assumed to be line-
arly elastic and irrotational. Also, the fluid is assumed to 
be non-flowing and inviscid (that is, viscosity causes no 
dissipative effects). For this fluid, the relation between 
pressure and volumetric strain is given by 
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where P, C11 and εv are the pressures which are equal to 
mean stresses, the bulk modulus and volumetric strains 
of fluid, respectively. In Eq. (1), Px, Py, Pz are the rotational 
stresses; C22, C33, C44 are the constraint parameters and 
wx, wy and wz are the rotations about the Cartesian axis x, 
y and z, respectively.  

In this study, the equations of motion of the fluid sys-
tem are obtained using energy principles. Using the fi-
nite element approximation, the total strain energy of 
the fluid system may be written as,  

𝜋 =
1

2
𝑢𝑓

𝑇𝐾𝑓𝑢𝑓 , (2) 

where Kf  and uf  are the stiffness matrix and the nodal 
displacement vector of fluid system, respectively. Kf is 
derived by summing stiffness matrices of the fluid ele-
ments as follows:  

𝐾𝑓 = ∑ 𝐾𝑓
𝑒    ,   𝐾𝑓

𝑒 = ∫ 𝐵𝑓
𝑒𝑇

𝑣
𝐶𝑓𝐵𝑓

𝑒𝑑𝑉𝑒 , (3) 

where Cf  is elasticity matrix consisting of diagonal terms 
in Eq. (1).  𝐵𝑓

𝑒 is strain-displacement matrix of the fluid 
element.  

An important behavior of fluid systems is the ability 
to displace without a change in volume. The increase in 
the potential energy of the system due to the free surface 
motion can be written as,   

𝜋𝑠 =
1

2
𝑢𝑠𝑓

𝑇 𝑆𝑓𝑢𝑠𝑓 , (4) 

where usf and Sf are vertical nodal displacement vector 
and stiffness matrix of the free surface of the fluid sys-
tem, respectively.   

𝑆𝑓 = ∑ 𝑆𝑓
𝑒   ,   𝑆𝑓

𝑒 = 𝜌𝑓𝑔 ∫ ℎ𝑠

𝑇

𝐴
ℎ𝑠 𝑑𝐴𝑒  , (5) 

where ℎ𝑠 is a vector consisting of interpolation functions 
of the free surface fluid element, 𝜌𝑓 and g are mass den-
sity of the fluid and acceleration due to gravity, respec-
tively.  

Finally, the kinetic energy of the fluid system must be 
considered to complete the energy contributions. This 
energy is given by,   

𝑇 =
1

2
𝑢̇𝑓

𝑇𝑀𝑓𝑢̇𝑓 , (6) 

where 𝑀𝑓 and 𝑢̇𝑓 are the mass matrix and the nodal ve-
locity vector of the fluid system, respectively (Clough 
and Penzien, 1993). 𝑀𝑓 is also obtained by summing the 
mass matrices of the fluid elements in the following:   

𝑀𝑓 = ∑ 𝑀𝑓
𝑒   ,   𝑀𝑓

𝑒 = 𝜌𝑓 ∫ 𝐻
𝑇

𝑉
𝐻̅𝑑𝑉𝑒  , (7) 

where 𝐻 is a matrix consisting of interpolation functions 
of the fluid element. 

If Eqs. (2), (4) and (6) are substituted into Lagrange’s 
equations, the equation of motion of the fluid system can 
be obtained as follows,   

𝑀𝑓𝑢̈𝑓 + 𝐾𝑓
∗𝑢𝑓 = 𝑅𝑓 , (8) 

where 𝐾𝑓
∗ , 𝑢̈𝑓, and 𝑅𝑓 are system stiffness matrix includ-

ing the free surface stiffness, nodal acceleration vector 
and nodal force vector, respectively (Bathe, 1996). 

 

3. Stochastic Formulation 

Since the formulation of the stochastic dynamic anal-
ysis of structural systems has been well known for many 
years, only the final equations will be given in this study. 
Detailed formulations for stochastic dynamic analysis 
are given in references (Lin, 1967; Yang, 1986; Manolis 
and Koliopoulas, 2001). One of the most important fac-
tors in stochastic analysis is the power spectral density 
function. If the power spectral density function of input 
process is known, the power spectral density function of 
output process can be determined easily. Filtered white 
noise model is generally used as power spectral density 
function for the modeling of ground motion simulation. 
Cross power spectral density function can be deter-
mined by using the equation of motion of the system un-
der the ground motion as;   

𝑆𝑖𝑗(𝜔) = 𝑆𝑢̈𝑔
(𝜔) ∑ ∑ 𝜓𝑖𝑟𝜓𝑗𝑠

𝑁
𝑠=1 𝐻𝑖𝑟(𝜔)𝐻𝑗𝑠

∗ (𝜔)𝑁
𝑟=1  , (9) 

where Süg(ω) represents the power spectral density 
function of ground motion, ω represents the frequency, 
H(ω) represents the frequency response function, N is 
the number of modes which are considered to contribute 
to the response, 𝜓𝑖𝑟 is the contribution of the rth mode 
to uj(t) displacement and * denotes the complex conju-
gate. For i=j, Eq. (9) gives the power spectral density 
function of the ith displacement. 

 

4. Ground Motion Model 

Ground motions are known to highly nonstationary in 
nature (both in amplitude and frequency content) and 
this has a huge impact on the stochastic response. Since 
the primary objective of this study is to perform a para-
metrical study with the ice cover effects on the response 
of offshore wind turbine subjected to stochastic seismic 
excitation, the non-stationary ground motion is not con-
sidered.  

The power spectral density function of ground accel-
eration for stationary ground motion is assumed to be of 
the form of filtered white noise ground motion model 
originally proposed by Kanai (1957)–Tajimi (1960) and 
modified by Clough and Penzien (1993),   
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where, ωg and ξg are the resonant frequency and 
damping ratio of the first filter; ωf  and ξf  are those of the 
second filter; and S0 is the spectrum of the white-noise 
bedrock acceleration. 

Power spectral density function of the Kocaeli 
earthquake for firm soil type is shown in Fig. 1. The 
calculated intensity parameter value for firm soil type is, 
S0(firm)=0.00103 m2/s3. Filter parameter values ( ωg, ξg, 
ωf, ξf ) proposed by Der Kiureghian and Nevenhofer 
(1991) are utilized as ωg=15.0 rad/s, ξg=0.6, ωf=1.5 
rad/s, and ξf=0.6. 

  

Fig. 1. Power spectral density function for the Kocaeli 
earthquake. 

5. Application 

The offshore wind turbine, water in the sea and soil 
was assumed to behave linear elastic, isotropic and ho-
mogeneous. Therefore, a non-linear phenomenon such 
as water cavitation was not included in the study. To 
evaluate the stochastic response of the coupled system, 
the material properties of the wind turbine body, sea wa-
ter and soil media used in the analyses are given in Table 
1. In addition, the average thicknesses of the wind tur-
bine are shown in Fig. 2. The mass of the nacelle was 
taken into account as 130,000 kg. 

Table 1. Material properties of considered coupled system. 

Material 
Elasticity  
Modulus 
(kN/m2) 

Poisson’s 
Ratio 

Mass per  
unit Vol. 
(kg/m3) 

Turbine 2.06x107 0.30 7800 

Soil type (S1)  2.00x106 0.30 2000 

Soil type (S2)  3.00x105 0.35 1900 

Soil type (S3)  5.00x104 0.40 1800 

Sea water 2.07x106 - 1000 

 

In this research, the stochastic responses of the fluid-
structure-soil interaction system of the offshore wind 
turbine are estimated by using a three dimensional finite 
element model based on Lagrangian approach (Fig. 3). In 
the Lagrangian approach, displacements are selected as 
the variables in both fluid and structure domains 
(Calayır et al., 1996; Olson et al., 1983). The formulation 
of the fluid system is presented according to the Lagran-
gian approach (Wilson and Khalvati, 1983). In this ap-
proach, fluid is assumed to be linearly elastic, inviscid 

and irrotational. The soil media is represented by solid 
elements; the wind tower and sea water are represented 
by shell and fluid elements in the finite element model, 
respectively. While SHELL63 element is used to model 
the wind turbine, soil media is modeled using SOLID45 
elements; FLUID80 element is used to model the sea wa-
ter media. At the sea water-wind turbine and sea water-
soil, the length of the coupling element is chosen as 0.001 
m. The main objective of the couplings is to hold equal 
the displacements between two reciprocal nodes. In this 
study, viscous boundary method developed by Lysmer 
and Kuhlemeyer (1969) is considered in three dimen-
sions. These viscous boundaries can be used with the fi-
nite element mesh as shown in Fig. 3. 

  

Fig. 2. Main dimensions of the offshore wind turbine. 

  

Fig. 3. Finite element model of the sea water-wind tur-
bine-soil interaction system for different soil conditions. 
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6. Results 

The effects of the foundation soil properties on the 
stochastic response of the offshore wind turbine are il-
lustrated in Figs. 4-5 by using three soil types (Table 1). 
In this section, all the support site conditions have firm 
soil (FF). For this purpose, the displacement power spec-
tral density (PSD) values for these soil types, at point A, 
depending on the frequency ranging from 0.0 to 1.4 Hz, 
is shown in Fig. 4. It is concluded from the figure that the 
displacement values increase as the soil gets softer. The 
same comments can be made for the one standard devi-
ation (1σ) of the Von Misses stress responses (N/m2) due 
to the different soil types on the offshore wind turbine as 
illustrated in Fig. 5. The maximum stresses for S1 and S3 
soil types occur in the same regions on the offshore wind 
turbine. Whereas the maximum stress values due to S2 
soil type occur in the different region on the offshore 
wind turbine. 

  

Fig. 4. The displacement power spectral density values 
at point A for the different soil types. 

  

Fig. 5. 1σ Von Misses stress contours for (a) S1, (b) S2 
and S3 soil types. 

7. Conclusions 

This study investigates the stochastic response of an off-
shore wind turbine under the random seismic excitation. 
The parametric analyses were carried out by considering 
the structure-sea water-soil interaction. The results for 
the coupled interaction finite element system have been 
modeled by using the computer software called ANSYS.  

The stochastic response of the offshore wind turbine 
including the structure-sea water-soil interaction during 
random seismic excitation is considerably affected by 
the different foundation soil properties. The results 
show that the values of the stochastic response of the 
coupled system increases as soil gets softer. 
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