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ABSTRACT

ARTICLE INFO

The finite element method has emerged as the most powerful and versatile numerical
method for solving a wide range of physical problems in science and engineering.
Today a large number of commercial programs exist that can be used to solve diverse
problems in structural and fluid mechanics, heat transfer and many other phenom-
ena. However, certain critical problems related to durability of concrete structures,
especially corrosion of reinforcement, cannot be readily solved using the available
software. This paper presents two finite element formulations, developed by the
writers, one dealing with the nonlinear analysis of composite concrete-steel bridges,
and the other with the durability of concrete structures, with emphasis on the corro-
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sion of reinforcement. The validity and accuracy of the proposed models are demon-
strated by comparing their results with appropriate experimental data.

1. Introduction

The finite element method (FEM) was developed
nearly half a century ago (Turner et al., 1956) to solve
two dimensional stress analysis problems; since then it
has evolved as the most powerful numerical method for
the solution of a wide range of problems in many areas
of science and engineering (Zienkiewicz and Taylor,
1989). Today it is routinely used by many practicing en-
gineers to solve diverse problems which cannot be oth-
erwise solved due to their complex boundary conditions
or anisotropic and nonlinear properties. While existing
commercial software can be used to solve a wide spec-
trum of problems, certain practical problems in civil en-
gineering, such as those dealing with durability of con-
crete structures, cannot be solved readily using current
commercial software. Among these are the prediction of
alkali-aggregate reaction, sulphate attack, and corrosion
of reinforcement. In this paper, a summary of the basic
FEM formulation for two problems that the writers have
worked on will be presented. The two problems are
among topics of current interest in the structural engi-
neering community; namely, durability, serviceability and
safety of concrete bridges and other exposed structures.

2. Nonlinear Analysis of Composite Bridges

Due to the noticeable increase in the permissible live
load of bridges over the last 50 years, there is need for
the accurate assessment of their serviceability and
strength. Composite bridges, comprising steel girders at-
tached to a concrete slab, Fig. 1(a), are common in many
countries, and their serviceability and strength depend
on the interaction between the concrete slab and the
steel girders. Various types of connectors can be used to
attach the slab to the girders, including welded steel sec-
tions and headed studs, Fig. 1(b), but today the latter
type of connector is most commonly used. These con-
nectors may achieve different levels of composite action,
varying from practically no interaction to full composite
action. The level of interaction may also depend on level
of applied load on the bridge. Although the FEM analysis
of such bridges can be performed under the assumption
of full composite action, the analysis of partial interac-
tion, caused by relative movement at the slab-girder in-
terfaces requires more effort. Continuum contact ele-
ments, available in some FEM commercial programs, can
be used to model the interaction, but the model parame-
ters need to be carefully selected by transforming the
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properties of the connector to equivalent properties that
can characterize the interface. Alternatively, a discrete
element can be developed whose properties could be di-
rectly obtained from the geometry and material proper-
ties of the actual connector. Razaqpur and Nofal (1989)
originally developed such a discrete element, which was
subsequently improved by Esfandiari (2001) and its ac-
curacy was verified by comparing its results with several
sets of experimental data. The improved model and its
verification are described below.

Fig. 1. (a) Typical steel-concrete composite bridge,
(b) Steel girder with stud shear connectors.

2.1. Shear connector finite element

Shear connectors, as shown in Fig. 2(a), can be mod-
eled as truss element with five degrees of freedom,
where the usual sixth degree of freedom is constrained
by assuming the connector to be axially rigid. This con-
straint is optional, but if not enforced the connector
would allow for separation normal to the slab-girder in-
terface. The derivation of the stiffness matrix for this el-
ement requires the shear force-slip relationship of the
connector. One such relationship was proposed by Yam
and Chapman (1968) based on their test data, viz.

F=a(l-e™?h, (1)

where F'is the shear force acting on either end of the con-
nector in one of the two orthogonal directions (kN) and
A (mm) is the corresponding relative displacement or
slip in the direction of F, Fig. 2(b); a and b are experi-

mental constants, which depend on the connector geom-
etry and strength; and e is base of the natural logarithm.
For stud connectors, Yam and Chapman suggested a and
b to be 30 kN and 4.72 mm. Using these values, Eq. (1) is
plotted in Fig. 3. Note that assuming different values for
a and b allows one to model connectors with different
strength and stiffness.

Using Eq. (1) and assuming that shear connectors only
allow slip at the interface, the stiffness matrix can be
written as:

[ k, 0 —k; O 0 1
0 0 0 0 0]
[Kl=| 0 0 k, 0 =kl 2)
—k, 0 0 kK oJ
0 0 —k, 0 kK

where k1 and k2 are the shear stiffness coefficients in the
two orthogonal directions in the plane of the connector
cross-section, and are given by

ak;
kj = 67; = abe™b%, 3)
where F; is the component of shear force acting on the
connector cross-section in directj(j=1,2) and 4, is its as-
sociated slip (Fig. 2(b)). As stated earlier, the bar is as-
sumed to be axially rigid, which is enforced by imposing
equal axial displacement at the two ends of the element
as shown in Fig. 2(a).

In using the above stiffness matrix, there is another
problem which must be considered. As illustrated in Fig.
2(b) the shear forces acting on a shear connector equili-
brate each other (¥ F, = 0, X, F,, = 0), but they create un-
balanced moments FiL and Fz:L, where L is the connector
length, and these moments violate the equilibrium re-
quirement. To overcome this problem, in this study the
unbalanced moments are reversed and applied as nodal
forces at the end of each iteration during the solution
process (Esfandiari, 2001). These moments are

(dM,); = (K);-1(dA,)iL, (4a)
(dM2); = (K)i-1(dAz)iL, (4b)

where (dM,); and (dM,); are unbalanced moments for
ith iteration, (K;);_; and (K,);_, are stiffness elements
of shear connector corresponding to the results of previ-
ous iteration and (dA,);, (dA,); are incremental slip val-
ues. Note that

A =uUyg—uy, (5a)
Ay =uz —us, (5b)
dA, = du, —du,, (6a)
dA, = du; — dus, (6b)

where ujand du; are, respectively, the total and incremental
displacement of the jth degree of freedom.
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Fig. 2. Shear connector element; (a) Nodal degrees of freedom, (b) Deformed shape.
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Fig. 3. Typical load slip curve for shear connector element.

2.2. Experimental verification of the model

To verify the above method, the experimental results
of Yam and Chapman’s continuous beam (1972), tested
at Imperial College, and Razaqpur and Nofal’s bridge
model (1988) will be compared with the finite element
results. This element is implemented in the nonlinear fi-
nite element program NONLACS (Razaqpur and Nofal,
1990), which can be used to analyze any three dimen-
sional reinforced/prestressed concrete, steel or compo-
site structure that can be idealized as an assemblage of
thin shell elements. The program uses theory of plastic-
ity in conjunction with Von Mises’ yield criterion for the
steel elements and the so-called equivalent strain con-
cept and the Kupfer and Gerstle (1973) biaxial failure
criterion for concrete. Steel reinforcement is modeled as
either discrete truss bars or as smeared steel layer. The
program uses the smeared crack approach and includes
tension stiffening.

2.2.1. Imperial College continuous beam

Yam and Chapman reported the experimental data for
a number of continuous beams. One of those beams, an-
alyzed in this study, had the loading and geometry illus-
trated in Fig. 4 and the material properties shown in

Table 1. The beam has two spans of 3.355 m each and
consists of a 152 mm deep I-section attached to a 60 mm
thick and 920 mm wide concrete slab by means of stud
shear connectors. The properties in Table 1 were taken
from Yam and Chapman’s report, but some properties
that were not given by them had to be assumed. The fi-
nite element mesh was similar to the one used for the
bridge model of Razaqpur and Nofal that will be de-
scribed in the next section.

Figs. 5, 6, and 7 compare the experimental and com-
puted deflected shape, slip along concrete-steel inter-
face, and strain along the bottom flange of the girder
from the left support to the centerline at load P=108.5
kN. We see good agreement between the two sets of re-
sults, which corroborate the accuracy of the proposed
model.

2.2.2. Razagpur and Nofal bridge model

This 1/3 scale bridge model was built and tested by
Razaqgpur and Nofal (1988). It was the model of a two-
lane bridge, 6.24 m wide and 18.00 m long. It has three
W840 x 170 compact steel girders spaced at 1.86 m. The
concrete slab has a total thickness of 182mm. Figs. 8 and
9 show the geometry and loading of the bridge model
and Table 2 shows its material properties. The material
strength values were obtained by Razaqpur and Nofal
from ancillary tests performed on concrete cylinders and
steel coupons. The bridge is simply supported with three
girders (3 W250x39) on 6 m span. The supports are
roller at one end and hinged at the other and the slab is
70 mm thick and 2060 mm wide.

The actuator loads were applied through 83 mm x 200
mm steel plates, placed above the central girder flange
on the concrete slab.

2.2.3. Finite element idealization

The finite element idealization of the bridge is shown
in Fig. 10. The finite element mesh consists of 20 ele-
ments along the span and 24 in the cross section. The top
and bottom steel reinforcement in the slab was modeled
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as smeared layers, and the slab mid-plane nodes were
connected to the top flange nodes directly below them by
the shear connector elements. As shown in Fig. 10, the steel
girders webs and flanges were idealized by elements with a

single layer, while the concrete slab was divided into 10 lay-
ers through its thickness. The applied load was divided into
20 increments and the bridge was analyzed over the entire
loading range up to failure.

P P
(a)

EoN EOR
| 3355 m 33556 m |
[ |

# 8 @ 250
| \ 920 mm |
\ \ \
2 ry \ r r3 r3 2 ry ry 60 mm
(b) 6 mm Th. 152 mm
9 mm Th.
76 mm

Fig. 4. Imperial College continuous beam details; (a) Elevation, (b) Cross section.

Table 1. Material properties of Imperial College continuous beam.

Material Constants Concrete Reinforcing Steel Steel Girder
fy (MPa) - 270 270 Given
Es (MPa) - 200000 200000 Given
Es* (MPa) - 5000 5000 Given
fc (MPa) 47.6 - Given
Emax 0.035 - Assumed
Ecu 0.002 = Assumed

Connector Details

37
E x 2' Headed studs, two rows at 5.72 inch

25

15 1

10

Displacement (mm)
a

Finite Element

= Experimental

T
0 2000 4000

T
6000

Distance from Left Support (mm)

Fig. 5. Deflected shape of Imperial College continuous beam at P=108.5 kN.



Razaqpur et al. / Challenge Journal of Structural Mechanics 1 (4) (2015) 173-184 177

5000
4000 A
3000 A
2000 A

1000 /"-'\
0

Finite Element

\
-1000 A
-2000 A
-3000 A
-4000

Slip x 10E-6 (mm)

T
000 4000

6000

Experimental

Distance from Left Support (mm)

Fig. 6. Concrete-steel interface slip in continuous beam at P=108.5 kN.
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Fig. 7. Strain along the bottom flange of the continuous beam at P=108.5 kN.
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Fig. 8. Geometry of bridge model; a) Elevation, b) Cross section.

2.2.4. Comparison of FEM results with experimental data

For brevity, selective FEM results are compared with
the corresponding experimental data. Fig. 11(a) shows
the full load- deflection curve of Girder 3 while Fig. 11(b)
shows the deflected shape of the same girder under in-
creasing load. The ultimate load predicted by finite ele-
ment was calculated to be 800 kN, which is 4% higher
than the corresponding experimental load of 766 kN.

Actually, the test had to be stopped because the actu-
ator stroke was exhausted, albeit at the end of the test,

large deformations and a visible plastic hinge had formed
in the central girder. Thus, it is possible that the bridge
could still carry some extra load before total collapse.

The variation of the longitudinal strain along the cen-
terline of the top and bottom flanges of Girder G3 is plot-
ted for different load levels in Fig. 12(a) and (b), respec-
tively. Considering the rather large strain values in the
bottom flange, it is obvious that the bridge has practi-
cally reached its ultimate capacity and is on the verge of
failure. Similarly good comparison was observed for the
concrete and steel reinforcement strains.
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EAST ACTUATOR WEST ACTUATOR
|
A LTI IIiII LI
55 kN 260 kN 185 kN
OGG ’
| 1274 | 1400 | 2200 1126 |
| | | \ |
Note: The loads shown indicate the relative magnitude of each load
Fig. 9. Loading of bridge model.
Table 2. Material properties of bridge model.
Material Constants Concrete Reinforcing Steel Steel Girder
fy (MPa) - 400 300 Given
Es (MPa) - 200000 200000 Given
Es* (MPa) - 0 0 Given
fc (MPa) 40 - - Given
Emax (at peak stress) 0.002 - - Assumed
Ecu (at peak failure) 0.0035 - - Assumed
Connector Details 15 mm X 60 mm Headed studs, two rows at 150 mm

| 20 FE 2 300 mm

Smeared steel layer Concrete layers (n=10)

10 a g 7 3 1 12 14 16 19 21 23 258
(b)
8 Shear conacctar” |13 Smeared steel layer 28
4 15 24
Steel plates
I 3 = 16 17 20 25 2 21

Fig. 10. Finite element idealization of bridge model; a) Elevation, b) Cross section.
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Fig. 11. Comparison of FEM and experimental results for girder G3; (a) Load-maximum deflection curve,

(b) Deflected shape.
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Fig. 12. Comparison of girder G3 top and bottom flanges longitudinal strain values obtained by FEM analysis with the
corresponding experimental data; (a) Top flance, (b) Bottom flance.



180 Razaqpur et al. / Challenge Journal of Structural Mechanics 1 (4) (2015) 173-184

Again, it is clear that program NONLAC and the pro-
posed shear connector model predicts the response of
these bridges accurately.

Next, the finite element formulation of chloride diffu-
sion, carbonation and reinforcement corrosion in con-
crete structures is presented.

3. FEM Modelling of Concrete Durability

To prevent steel reinforcement corrosion and the en-
suing deterioration of concrete, it is useful to have tools
that would enable designers to predict the performance
of structures under prescribed environmental/chemical
conditions. Here a model is proposed and is imple-
mented in a finite element program. The results of the
model are validated by comparing them with available
experimental data. The model includes consideration of
the various phenomena which influence both the initia-
tion and propagation stages of the corrosion process.
This includes temperature, moisture, chloride ions, and
oxygen transport within concrete. The model accounts
for the effects of changes in exposure conditions on the
rate of corrosion and the effects of the corrosion reac-
tions on the transport properties of concrete.

3.1. Steel reinforcement corrosion process

Within the initially high alkaline environment of con-
crete, reinforcing steel is covered with an insoluble film
of iron oxides (passive layer) which normally protects
the steel from further corrosion. The loss of the passive
layer, termed depassivation, leads to further corrosion.
The presence of chloride ions, the carbonation of con-
crete, the physical and the chemical properties of con-
crete, the surface characteristics and the chemical com-
position of steel, and sustained mechanical stresses are
key factors influencing the depassivation and rate of cor-
rosion of steel in concrete (Neville, 1996; Broomfield,
1997; Uhlig and Revie, 1985).

It has become common practice to divide the corro-
sion process in concrete into two successive stages. The
first stage, called the initiation stage, is defined as the pe-
riod during which corrosive agents, such as chloride ions
or carbon dioxide, enter concrete and move towards the
reinforcement from the surface of concrete, while the
steel remains passive. The loss of passivity marks the on-
set of the second, or propagation, stage during which ac-
tive corrosion of steel occurs (Tutti, 1982). Existing mod-
els define the beginning of the propagation stage in
terms of the free chloride concentration at the surface of
the steel. Once this concentration exceeds a prescribed
threshold, corrosion is assumed to commence. Subse-
quent entry of more chlorides is assumed to be inconse-
quential insofar as corrosion rate and amount is con-
cerned. The problem with this approach is neglecting the
symbiotic relationship between the initiation and prop-
agation stages (Maruya et al,, 2003).

In the present study, which is based on the writer’s
previous work (Isgor and Razaqpur, 2004, 2005, 2006a

and 2006b), the initiation and propagation stages are
unified and are treated with the same level of detail. In
existing models, the initiation stage parameters, such as
concrete temperature, moisture content, chloride ions
and oxygen concentrations normally vary within this
stage, but not in the propagation stage. On the contrary,
in the proposed model these parameters are assumed to
vary in both stages, which allows for the consideration of
the effects of corrosion reactions on the properties of
concrete and the chemical composition of the pore solu-
tion around the reinforcement (e.g. changes in electrical
resistivity, pH, and oxygen concentration).

3.2. Proposed model

As discussed previously, the proposed model consists
of initiation and propagation stages as described below.

3.2.1. Initiation stage

The governing equations of the phenomena consid-
ered in the initiation stage of the model are shown in Ta-
ble 3. Fig. 13 illustrates the solution strategy thatis used,
and it allows the distribution of the following environ-
mental / chemical quantities in a member: temperature,
moisture, pH (OH- concentration), and oxygen concen-
tration.

3.2.2. Finite element solution of governing equations

As indicated in Table 3, the distribution of each pa-
rameter in concrete is governed by a quasi-harmonic
equation of the form:

9?2 9?2 a

ke S+ ky SE+Q=m, 7)
where kx and ky are the appropriate conductivities, Q is
the sink/source term, and m is a coefficient represent-
ing the pertinent material properties. The quantity ¢
denotes a potential which may be due to chemical con-
centration, thermal, electrical or hydraulic fields. The
term on the right-hand side of Eq. (7) represents the
change in potential with time. Following Logan (1992),
the functional corresponding to Eq. (7) may be written
as Trh:

=310, [ G+ (5) -2(e-
) <p] v - [ff;, 4" ¢dS + 5 [f;, he(p — 9)2dS, (8)

where h. is the coefficient of convection, ¢ is the value
of the field variable away from the boundary, Vis the vol-
ume of the domain of interest (finite element), S is its
surface, S1 and Sz are portions of the boundary over
which flux g* and convective transfer are specified, re-
spectively. Using customary finite element notation, Eq.
(2) can be written in matrix form as:
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m, = ()" [ff, [[BI"(DI[Bl]avip} — {@}" [ff, INI" QaV + [[f, pc[NI"{¢}" IN]2Eav — ()" JJ5, [NT"q = dS +
1T, he[((Y INTTINT{@} — (D} [N + [N} @)oo + oo”)]dS,

where {¢} is the vector representing the nodal values of the field variable, [N] is the shape function matrix, [D] is the
material property matrix and [B] is a matrix whose elements are derivatives of the shape functions.

(9)

Table 3. The governing equations of the initiation stage of the model.

Process Governing Equation Definitions Explanations
T: temperature 1) Includes convective and radiative boundary
k : Thermal conductivity conditions
Heat Qr: sink / source term 2) Assumed to be unaffected by the moisture
Transfer KV2T + Qp = pca_T + h_P (T—T,) P density tranfer
$=T a - A c: specific heat of concrete
t:time
h : coeff. of conductive heat transfer
A(P) : area(perimeter)
h : relative humidity 1) Dx is a function of temperature
Moisture Dp: moisture diffusion coefficient 2) Production of water in the carbonation
Transfer D,V?h + Q) = v, @ Qn: sink / source term reaction provides the source term for the
-n oh ot we: evaporable water content moisture transfer analysis
¢= t:time 3) Equilibrium between vapour and liquid phases
is monitored by using equilibrium isotherms
Chloride Cr: free [Cl] 1) A number of Chloride binding isotherms are
Transport ac, Da: Chloride diffusion coefficient implemented in the model through the sink term
5 DClVZCf T G === Qa: sink / source term representing 2) Chloride release under low pH is implemented
ot
¢ =Cf chloride binding or release by using the source term
t:time
Cc: COz concentration 1) The source term represents the carbonation
o, D, : CO2 diffusion coefficient reactions
Transport ac, Qc: sink / source term representing 2) The concentration changes of chemical
5 DV2C+Qc =— carbonation reactions compounds and the pH are monitored at each
ot p p
¢ =C, t:time time step
3) Changes in pore structure due to carbonation
is considered
02 Co : 02 concentration 1) Oxygen diffusion is considered to be a function
Transport D,V%C, + 0, = ac, D, : 0 diffusion coefficient of moisture content, temperature and porosity of
at Qo : sink / source term concrete
¢=C t:time
Coupled Heat / Update:

Ivloisture Transfer

% Lk Dy D Dy

'

0y, Transferand -+

aralyses

Alza, electrical resistivity of
concrete for propagation stage

|—h- Fecord:
pH

:

!

Detetrnine
[CI] by
cotrection

Chlonde Transport Analysis
| - Diffusion
- Chlonde Binding / Feleasze

0, Tratsfer

Analysis

Fig. 13. Initiation stage of the model.
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Using the principle of stationary potential, the follow-
ing equations of equilibrium are obtained:

[kl{¢} + [mI{$} = {f}, (10)

where the superscript dot denotes differentiation with re-
spect to time. Eq. (10) can be written in expanded form as:

105, (1817 (D1(B1]av + ff,, h[N]T[N]ds] @} +
0I5, coNT"[N1av] b} = (I, [N QaV +
If,, INT"q*dS + [, IN1"hepndS . (11)

Using well known finite element techniques, the
global balance equations are set-up by assembling the el-
ement balance equations, and they are solved using nu-
merical time integration schemes; the details of the solu-
tion procedure and more information on the initiation
stage can be found in Martin-Pérez (1999) and Dhatt and
Touzot (1984).

3.2.3. Propagation stage

The corrosion rate of steel is a function of the current
density, which can be determined at any point on the
steel if the electrochemical potential (abbreviated
henceforth as “potential”) distribution around that point
is known. Knowing the potential distribution, the cur-
rent density, i [A/cm?], at any point on the steel surface
can be calculated using:

. 1 ¢

L= ; a . (12)
¢ [volts] is the potential, r [2-cm (ohm-cm)] is the re-

sistivity of the pore solution and n is the direction nor-

mal to the bar surface.

The rate of rust production at the anodic regions, Jrust
[kg/m2-s], is related to the current density by Faraday’s
law. Consequently, the rate of ferrous oxide, Fe(OH)2,
production, Jrq, at the anodic regions can be written as:

Jra = 2% = 4.656 X 107i,, (13)

where iq is the anodic current density, F is the Faraday’s
constant (9.65x104 C/mol), and z is the number of elec-
trons exchanged in the reaction (z=2 for steel corrosion).
Fe(OH)z, can be further oxidized, and this will result in
the production of Fe(OH)s. Since one mole of Fe(OH)z,
which is 89.845 g, produces one mole of Fe(OH)s
(106.845 g), the rate of rust production, Jrus, at the an-
odic regions can be calculated as:

106.845
89.845

Jrust = Jra = 5.556 X 10774, . (14)

The main difficulty in this process is the calculation of
current densities on the steel surface. According to Eq.
(12), the calculation of current densities requires
knowledge of the electrochemical potential distribution
in the vicinity of the reinforcement.

Based on the law of electrical charge conservation and
isotropic conductivity, the potential distribution can be
represented by the Laplace’s equation (Munn, 1982):

72¢=0. (15)

To determine the potential distribution on the surface
of the steel, one must solve Eq. (15) subject to prescribed
boundary conditions. The boundary conditions com-
prise the relationship between potential and current
density for the anodic and cathodic regions as well as
prescribed current densities. For the anodic and ca-
thodic regions of the steel surface, the boundary condi-
tion are defined as ¢p= ¢pa and ¢= ¢, where ¢, and ¢ are
polarized anodic and cathodic potentials which can be
expressed as (Stern and Geary, 1957):

¢ ¢Fe +.8a lOg + i Ret [16)

2.303RT

b = ¢02 + B log ic —lo g +iR., (17)
where ¢g, and ¢g, are the standard half-cell potentials
of Fe and O, respectively, S is the Tafel slope of the an-
odic reaction, and ioq is the anodic exchange current den-
sity, S is the Tafel slope of the cathodic reaction, ioc is the
exchange current density of the cathodic reaction, i is
the limiting current density, and R. is the resistance
(Ohms) of the pore solution around the cathodic sites.
For more information about the polarization behavior of
steel, reference can be made to Uhlig and Revie (1985)
and Stern and Geary (1957). The prescribed current
boundary conditions on the steel surface are non-linear
because current densities i and ic are functions of the
polarized potential, which is the state variable of Eq. (9).
In the following sections, we will present our solution
strategy to solve this problem in order to determine the
corrosion rate in a given structure.

Eq. (15) is a special case of Eq. (7), hence the finite el-
ement formulation of Eq. (7) follows the same steps as
those described for Eq. (7). However, due to the non-lin-
ear boundary conditions given by Egs. (16) and (17), Eq.
(15) must be solved by using an iterative technique.

3.2.4. Numerical example

To illustrate the accuracy of the proposed procedure,
Li’s (2001) experimental work is simulated. The experi-
ment consists of a large scale beam, as illustrated in Fig.
14, exposed to a chloride solution on its top surface. To
increase the concrete permeability, the beam was pre-
cracked by subjecting it to the loading shown. The expo-
sure conditions in the test and other details of the exper-
imental program can be obtained from Li (2001).

Using the input data given in Table 4, the corrosion rate
in the top reinforcement is determined using the pro-
posed model. The beam was discretized by 3091 four
node elements. Due to space limitations, other details of
the simulation are not shown, but Fig. 15(a) compares the
predicted and measured half-cell potential values. While
in the experiment, the actual amount of corrosion was not
measured, in the simulation it was calculated as shown in
Fig. 15(b). From Fig. 15(a) we can see that the simulation
results are in good agreement with the experimental data.
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Fig. 14. Geometry and crack distribution of the modelled beam.

Table 4. Parameters used in the proposed model.

Initiation Stage Parameters Value
Specific heat 1000 J/kg°C
Coefficient of conduction 2 W/m°C
Density of concrete 2400 kg/m3
Adsorption isotherm BET
Chloride binding isotherm Langmuir
Chloride release No release

Chloride threshold value

0.06% of concrete wt.

Propagation Stage Parameters

Value

Reference concrete resistivity

Initial oxygen concentration

External oxygen concentration

Oxygen diffusion coefficient
Fugacity of oxygen
Cathodic exchange current density

Anodic exchange current density

Thickness of the stagnant layer around the steel surface

Transference number

Cathodic limiting current density

Tafel slope for the cathodic reaction

Tafel slope for the anodic reaction

14000 Q-cm at 25°C
0.005 kg/m3 solution
0.0085 kg/m3 solution
Calculated
0.2
6.25x 10-10 A/cm?
1.875x 108 A/cm?
0.05 cm
1
Calculated
Calculated
Calculated
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Fig. 15. (a) Comparison of the finite element analysis results for half-cell potential with the experimental data for
the beam at the crack locations, (b) Predicted amount of corrosion along the top reinforcement in Li’s test beam.
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4., Conclusions

Two finite element modelling methods and their ex-
perimental validation are presented. The first model
deals with the nonlinear response and ultimate strength
capacity of composite concrete-steel bridges while the
second one deals with durability of reinforced concrete
structures, with particular emphasis on the corrosion of
reinforcement.

The objective of the paper is to demonstrate that the
utilization of suitable theoretical/empirical models, in
conjunction with the powerful nonlinear finite element
technique, can provide engineers with useful simulation
tools, and the ability to predict the response of struc-
tures under variable loading, environmental and mate-
rial degradation conditions. The current results show
that although the phenomenon of corrosion in concrete
is complex, nevertheless, the electrochemical principles
that govern its initiation and propagation can be cap-
tured by means of numerical simulations.
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