
 

CHALLENGE JOURNAL OF STRUCTURAL MECHANICS 6 (4) (2020) 183–190 
 

 

 

 
* Corresponding author. E-mail address: cakiroglu@tau.edu.tr (C. Cakiroglu) 

ISSN: 2149-8024 / DOI: https://doi.org/10.20528/cjsmec.2020.04.003 

Research Article 

The effect of slenderness on the lateral-torsional buckling  

and ultimate shear capacity of plate girders 

Celal Cakiroglu a,* , Kamrul Islam b , Gebrail Bekdaş c  

a Department of Civil Engineering, Turkish-German University, 34820 İstanbul, Turkey 
b Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, H3T 1J4 Montréal (Québec), Canada  
c Department of Civil Engineering, İstanbul University-Cerrahpaşa, 34320 İstanbul, Turkey 

 

A B S T R A C T 

Lateral torsional buckling and shear buckling are two of the most significant struc-
tural responses that should be considered during the design process of plate girders. 

Particularly the importance of lateral torsional buckling was once again witnessed 

during the reconstruction process of a bridge in Edmonton, Alberta, Canada when the 

plate girders failed due to insufficient bracing. This current study aims to acquire a 
better understanding of the effect of geometric parameters such as the web slender-

ness, flange slenderness and span-to-depth ratio on the critical buckling moment and 

ultimate shear strength of plate girders. To achieve this goal the critical buckling mo-

ment and ultimate shear strength of a plate girder were parametrically studied for a 

large number of geometries using a load case from an experimental study. The results 

of this parametric study clarified the effects of web slenderness, flange slenderness 

and span-to-depth ratio on the structural performance of a plate girder. The visuali-

zation of the results was used to identify the ranges of these geometric parameters 

where the structural performance is most sensitive to changing them. 
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1. Introduction 

Lateral-torsional and shear buckling are known to be 
two of the major failure modes of slender structural mem-
bers. While the web of the plate girders is the primary el-
ement resisting the shear buckling, the flanges of them are 
primarily carrying the bending and torsional loads. Both 
of these failure modes were investigated extensively in or-
der to obtain analytical formulations that predict the load 
carrying capacity of structures subjected to shear forces 
and bending moments accurately. The research works 
done by Nethercot (1974), Fukumoto et al. (1980), and 
MacPhedran and Grondin (2011), can be mentioned 
among the notable works investigating lateral-torsional 
buckling. Particularly plate girders with doubly symmet-
ric I-sections have been the subject of comprehensive re-
search. The importance of having a sound understanding 
of the buckling behavior of plate girders was once again 
seen during the replacement project of the 102 Avenue 

Bridge over Groat Road in Edmonton, Alberta, Canada. 
The newly installed plate girders of this bridge failed in 
the lateral-torsional buckling mode under wind and con-
struction loads due to insufficient bracing. This was one of 
many similar incidents of steel bridge girder failure due to 
lateral-torsional buckling which occurred at the construc-
tion/deconstruction stages or during the service life 
(Thiébaud et al., 2016). 

In addition to bending moment plate girders are also ex-
pected to carry shear forces. The web part of the plate gird-
ers carries the shear forces and shear buckling is therefore 
a critical failure mode for these structural members. Fre-
quently the out-of-plane shear buckling resistance of plate 
girders is increased through the application of transverse 
stiffeners or corrugated webs. Therefore, in addition to the 
lateral -torsional buckling analysis, the design process of 
plate girders also involves the shear buckling of the struc-
tural member. Fig. 1 shows an example of shear buckling 
during experiments carried out by Mamazizi et al. (2013).   
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Fig. 1. Post-buckling deformation of stiffened plate girder under transverse loading (Mamazizi et al., 2013).

The design process of plate girders with the maximum 
load carrying capacity within cost and material con-
straints includes finding the optimal combination of 
plate thicknesses, web plate slenderness and stiffener 
spacing (Ziemian, 2010; Lee and Yoo, 1998; Gupta et al., 
2006). While obtaining the plate girder profile that de-
livers the maximum structural performance with the 
minimum material usage is a challenging task the varia-
tion of the structural cost and performance with respect 
to flange and web slenderness values is not clear and can 
be at times counterintuitive. In order to gain a better un-
derstanding of these variations parametric studies of the 
buckling load and cross sectional area of a plate girder 
are carried out in this study. The main objective of this 
study is to clarify the impacts of changing the web plate 
slenderness, flange slenderness and the span-to-depth 
ratio of a plate girder on the structural performance. The 
critical buckling moment that leads to lateral torsional 
buckling and the ultimate shear stress are used as 
measures of structural performance. 

1.1. Slenderness of girder plates 

Plate girder components subject to flexure can be 
classified as compact, noncompact or slender according 
to their slenderness. Compact sections are those that 
have a small enough slenderness such that a local buck-
ling of the compression flange or the web would not oc-
cur before the entire section reaches its yield strength 
and the section is able to attain its full plastic moment 
(Williams, 2011). The slenderness of a flange is quanti-
fied as 𝜆𝑓 = 𝑏𝑓/2𝑡𝑓  where  𝑏𝑓  and 𝑡𝑓  are the width and 
the thickness of the flange respectively. Similarly, the 
slenderness of the web plate is quantified as 𝜆𝑤 = 𝐷/𝑡𝑤 
where 𝐷 is the height of the plate girder excluding the 
flange thicknesses and 𝑡𝑤 is the web plate thickness. In 
order to be classified as compact the flange and the web 
of a plate girder must satisfy the inequalities in Eqs. (1) 
and (2) respectively as per (AISC, 2016). 

𝜆𝑓 =
𝑏𝑓

2𝑡𝑓
≤ 0.38√

𝐸

𝜎𝑦
 (1) 

𝜆𝑤 =
𝐷

𝑡𝑤
≤ 3.76√

𝐸

𝜎𝑦
 (2) 

In the above equations 𝜎𝑦 is the yield stress and 𝐸 is 
the Young’s modulus of steel. Noncompact structural 
members are those that are susceptible to local buckling 
before the section attains its full plastic moment. In or-
der for the flange or the web of a plate girder to be clas-
sified as noncompact the slenderness values of these 
members must fall into the intervalls given in Eqs. (3) 
and (4) respectively (AISC, 2016). 

0.38√
𝐸

𝜎𝑦
< 𝜆𝑓 =

𝑏𝑓

2𝑡𝑓
< √

𝐸

𝜎𝑦
 (3) 

3.76√
𝐸

𝜎𝑦
< 𝜆𝑤 =

𝐷

𝑡𝑤
< 5.70√

𝐸

𝜎𝑦
 (4) 

Slender sections are those that are susceptible to local 
buckling prior to reaching the yield stress anywhere on the 
section. In case of slender members, the slenderness pa-
rameter 𝜆 is greater than all limit values given in Eqs. (1) 
to (4). The classification of structural members with re-
spect to their slenderness values is also visualized in Fig. 2. 

1.2. Lateral-torsional buckling 

Lateral Torsional Buckling (LTB) can be defined as a 
combination of lateral displacement and twisting due to 
the application of transverse forces on a beam type 
structure in the absence of sufficient lateral bracing (Ka-
bir and Bhowmick, 2016). The research in the field of 
beam and plate girder buckling resulted in various equa-
tions for the prediction of the lateral torsional buckling 
load. The solutions available in the (AISC, 2016) and 
(CSA, 2009) codes for the prediction of the lateral tor-
sional buckling capacity provide the buckling capacity 
for the case of uniform bending moment distribution to-
gether with a moment gradient factor 𝐶𝑏 for the adjust-
ment of the predicted capacities to the case of a non-uni-
form bending moment distribution. (Wong and Driver, 
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2010) developed Eq. (5) in order to incorporate the var-
iation of the bending moment along unbraced sections of 
the plate girder into the buckling load capacity. 

𝐶𝑏 =
4𝑀𝑚𝑎𝑥

√𝑀𝑚𝑎𝑥
2 +4𝑀𝐴

2 +7𝑀𝐵
2 +4𝑀𝐶

2
≤ 2.5 (5)

 

Fig. 2. Classification of structural members according to slenderness (Williams, 2011).

In Eq. (5) 𝑀𝑚𝑎𝑥 is the absolute value of the maximum 
bending moment and 𝑀𝐴, 𝑀𝐵, 𝑀𝐶 are the absolute values 
of the bending moments at 𝑎 ⁄ 4, 𝑎 ⁄ 2 and 3𝑎 ⁄ 4 length 
along the unbraced span of the plate girder respectively 
where 𝑎 denotes the total length of the unbraced span. 
In this study the moment distribution between two stiff-
eners is assumed linear corresponding to an unbraced 
span of the girder beam shown in Fig. 1. Once 𝐶𝑏  is 
known, the critical bending moment 𝑀𝑐𝑟 for lateral tor-
sional buckling can be calculated using Eq. (6). 

𝑀𝑐𝑟 = 𝐶𝑏𝑀0𝑐𝑟 (6) 

In Eq. (6), 𝑀0𝑐𝑟 is the critical bending moment of an 
unbraced span under uniform bending moment. The so-
lution for 𝑀0𝑐𝑟  is given in Eq. (7) (Galambos and 
Surovek, 2008). 

𝑀0𝑐𝑟 =
𝜋

𝑎
√𝐸𝐼𝑦 (𝐺𝐽 +

𝜋2𝐸𝐶𝑤

𝑎2
) (7) 

In Eq. (7), 𝐺 is the shear modulus, 𝐸 is the modulus of 
elasticity, 𝐽  is the St. Venant torsion constant, 𝐼𝑦  is the 
moment of inertia with respect to the minor axis of the I-
section and 𝐶𝑤 is the warping constant.  

1.3. Ultimate shear strength 

The shear forces acting on girder plates are largely 
carried by the web plates. After the onset of local buck-
ling of the web these steel plates under shear force are 
known to exhibit a significant amount of load carrying 
capacity in the post-buckling regime (Glassman and 
Moreyra Garlock, 2016). This structural behavior is thor-
oughly investigated in the literature and attributed to 
the existence of tensile stresses acting in the diagonal di-
rection of the plates after the onset of shear buckling 
(Basler, 1961; White and Barker, 2008; Ziemian, 2010). 
These areas along the diagonal of the web plate where 
tensile stresses are acting can also be seen in Fig. 1. The 

research led to the development of various models for 
the prediction of the post-buckling shear capacity of web 
plates based on the concept of a tension field along the 
plate diagonal. “Tension field theory” is often used as a 
concept that includes all of these models. This theory is 
based on the observation that the stiffeners of a plate 
girder take up the compressive stresses resulting from 
the shear forces and the web plate resists buckling due 
to shear forces through tensile stresses forming along 
the plate diagonal (Wagner, 1931; Wilson, 1886). Among 
the models of the tension field theory the one which 
gained the most widespread acceptance in the research 
community is the model developed by (Basler, 1961) 
which is also included in (AISC, 2016). 

Fig. 3 illustrates the concept of tension field on a web 
plate surrounded by flanges and transverse stiffeners. 
Here 𝜏𝑢  denotes the ultimate post buckling shear 
strength. The plate in Fig. 3 represents the unstiffened 
part of a plate girder web and it is assumed to be simply 
supported (SS) at all edges. An equation that predicts 𝜏𝑢 
was first developed by (Basler, 1961) and later modified 
by (Fujii, 1968; Gaylord, 1963; Selberg, 1974) as given in 
Eq. (8). 

𝜏𝑢 = 𝜏𝑐𝑟  + 𝜎𝑦 (1 −
𝜏𝑐𝑟

𝜏𝑦
) (

𝑠𝑖𝑛𝜃𝑑   

2+𝑐𝑜𝑠𝜃𝑑
) (8) 

Once 𝜏𝑢  is known, the ultimate postbuckling shear 
force 𝑉𝑢 can be obtained through 𝑉𝑢 = 𝜏𝑢  𝐷𝑡𝑤 where 𝐷 is 
the depth of the plate as seen in Fig. 3 and 𝑡𝑤 is the thick-
ness of the web plate. 

In Eq. (8), 𝜃𝑑 is the angle of the web panel diagonal. 𝜎𝑦 
is the yield strength of the plate material from which the 
shear yield strength 𝜏𝑦  can be obtained through 𝜏𝑦 =
0.6𝜎𝑦. The elastic shear buckling strength 𝜏𝑐𝑟 in Eq. (8) is 
calculated through Eq. (9) (Timoshenko, 2009). 

𝜏𝑐𝑟 =
𝑘𝜋2𝐸

12(1−𝜈2)(
𝐷

𝑡𝑤
)

2 (9) 
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Fig. 3. Schematic of Basler's tension field theory (Glassman and Moreyra Garlock, 2016).

In Eq. (9), 𝐸 is the modulus of elasticity, 𝜈 is the Pois-
son’s ratio, 𝐷 ⁄ 𝑡𝑤   is the slenderness ratio and 𝑘 is the 
shear buckling coefficient which can be calculated as a 
function of 𝑎 ⁄ 𝐷(span-to-depth ratio) and the assumed 
boundary conditions of the web plate. The equation for 
𝑘 is given in Eq. (10) for simply supported boundary con-
ditions where 𝑎 is the clear distance between transverse 
stiffeners (AISC, 2016). 

𝑘 = 5.0 +
5.0

(𝑎 𝐷⁄ )2 (10) 

2. Methodology and Results 

Even though the lateral-torsional buckling load and 
the ultimate shear strength of plate girders can be pre-
dicted for given profile dimensions reliably, the dimen-
sioning of a profile for the best combination of economic 
design and structural performance often necessitates 
the application of optimization procedures (Bekdaş and 
Nigdeli, 2013). Due to the computational overhead that 
many optimization techniques entail this dimensioning 
is often done in practice through trial and error. In this 
process it is crucial to have an intuition about the effect 

of slenderness of the web and the flange on the structural 
performance. However, from Eqs. (5) to (8) the variation 
of 𝑀𝑐𝑟 and 𝜏𝑢 with respect to the slenderness values of 
the web and the flange cannot be easily discerned. In or-
der to gain a better understanding of the relationship be-
tween slenderness and structural performance, a para-
metric study of the slenderness is carried out in this 
study. As the base model the girder plate tested by 
(Mamazizi et al., 2013) is used. The material properties 
and dimensions of this model are given in Table 1. In this 
table 𝑓𝑦𝑓  and 𝑓𝑦𝑤  denote the yield strengths of the flange 
and the web respectively. The parametric study resulted 
in 917826 different combinations of the web thickness, 
web plate depth, flange thickness, flange width and cor-
responding critical LTB moment and ultimate shear 
strength values. The analysis was carried out using a cus-
tom program developed in the Python programming lan-
guage. The parameter ranges of the parametric study are 
selected in such a way that they are in the same order of 
magnitude as the plate girder dimensions listed in Table 
1. The upper and lower bounds of these parameters are 
determined as listed in Table 2 considering fabrication 
constraints such that web plate thicknesses less than 
2mm are not included in the parametric study.

Table 1. The geometric and material properties used in the experimental study (Mamazizi et al., 2013). 

𝑡𝑓  [𝑚𝑚] 𝑏𝑓  [𝑚𝑚] 𝑡𝑤  [𝑚𝑚] 𝐷 [𝑚𝑚] 𝑎 [𝑚𝑚] 𝑓𝑦𝑓  [𝑀𝑃𝑎] 𝑓𝑦𝑤  [𝑀𝑃𝑎] 

15 250 2 800 750 235 210 

Table 2. Parameter ranges and increment sizes used in the parametric study. 

 𝑡𝑓  [𝑚𝑚] 𝑡𝑤  [𝑚𝑚] 𝑏𝑓  [𝑚𝑚] 𝐷 [𝑚𝑚] 

Upper bound 30 10 350 1200 

Lower bound 5 2 150 400 

Increment size 1 0.2 10 20 

2.1. Effects of slenderness on the lateral-torsional 
buckling load 

Even though the critical buckling moment can be com-
puted using Eqs. (5) to (7), it is hard for the practicing 
engineer to develop an intuition about how the flange 
and web slenderness ratios effect the lateral-torsional 
buckling moment from these equations. To clarify these 

effects, 𝑀𝑐𝑟 has been calculated using Eqs. (5) to (7) and 
its variation has been plotted with respect to 𝜆𝑓. Fig. 4 
shows this variation for five different values of 𝜆𝑤. Fig. 4 
shows that increasing the flange slenderness has a favor-
able effect on the critical moment for all values of the 
web slenderness. Furthermore, this favorable effect be-
comes more pronounced as the web slenderness in-
creases.  



 Cakiroglu et al. / Challenge Journal of Structural Mechanics 6 (4) (2020) 183–190 187 

 

 
Fig. 4. Variation of the critical bending moment with respect to flange slenderness.

Fig. 5 shows that a similar variation of the critical mo-
ment can also be observed with respect to the web slen-
derness. Also, the rate of increase of 𝑀𝑐𝑟 seems to be pro-
portional to the flange slenderness. The major difference 

between the two variations in Fig. 4 and Fig. 5 is that 𝑀𝑐𝑟 
has a nonlinear variation with respect to 𝜆𝑓 and a linear 
variation with respect to 𝜆𝑤. A combination of the effects 
of 𝜆𝑓 and 𝜆𝑤 on 𝑀𝑐𝑟  can be seen in Fig. 6.  

 
Fig. 5. Variation of the critical bending moment with respect to web slenderness. 

 
Fig. 6. Variation of the critical buckling moment with respect to the flange and web slenderness ratios.

2.2. Effects of slenderness on the ultimate shear 
strength 

From Eqs.(8) to (10) the parameters that 𝜏𝑢 depends 
on can be summarized in function format as in Eq. (11). 

𝜏𝑢 = 𝑓(𝜃𝑑, 𝜎𝑦 , 4 𝜆𝑤 , 𝜈, 𝐸) (11) 

From these five parameters 𝜎𝑦 , 𝜈 and 𝐸 are material 
constants and the effect of the remaining two design var-
iables are investigated in this study. According to Eqs. 
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(8) and (9) the flange slenderness has no effect on the 
ultimate shear strength. Therefore, the variation of 𝜏𝑢 
with respect to the web slenderness is the same for any 
flange slenderness. This variation can be seen in Fig. 7 
for 𝜆𝑓 = 15  while this variation is independent of the 
value that 𝜆𝑓 takes. From Fig. 7 it can be observed that 
the effect of web slenderness on 𝜏𝑢 is directly related to 

the web plate thickness. For relatively small values of 𝑡𝑤 
such as 2mm or 3mm, increasing the web slenderness 
seems to have a favorable effect on the ultimate shear 
strength. On the other hand, for greater values of the web 
plate thickness, increasing the web plate slenderness has 
the opposite effect on  𝜏𝑢.

 
Fig. 7. Variation of 𝜏𝑢 with respect to web plate slenderness.

2.3. Effects of plate diagonal angle on the ultimate 
shear strength 

The effect of the angle 𝜃𝑑 that appears in Eq. (8) is vis-
ualized in Figs. 8 and 9. Since this angle is a function of 
the span-to-depth ratio (𝑎/𝐷), understanding the de-
pendence of 𝜏𝑢 on 𝜃𝑑 also gives insights about the rela-
tionship between 𝜏𝑢  and the 𝑎/𝐷  ratio. According to 

(Williams, 2011), the 𝑎/𝐷 ratio is recommended to be in 
the range from 10 to 12 which corresponds to a range 
from 4.76° to 5.71° for 𝜃𝑑. The variation of 𝜏𝑢 for the rec-
ommended range of 𝜃𝑑 is plotted in Fig. 8 for five differ-
ent web plate thicknesses. For all of these 𝑡𝑤 values in-
creasing 𝜃𝑑  seems to have an adverse effect on 𝜏𝑢 . In-
creasing the value of 𝑡𝑤 leads to greater ultimate shear 
stresses as expected.

 
Fig. 8. The variation of 𝜏𝑢 with respect to 𝜃𝑑 in the recommended range for 𝜃𝑑.

In order to better understand the variation of 𝜏𝑢 for a 
wider range of 𝜃𝑑, Figure 9 was plotted for 𝜃𝑑 values up 
to 45°. From Fig. 9 it can be seen that the effect of 𝜃𝑑 on 
𝜏𝑢  is most significant for angles less than about 20°. 
Overall increasing 𝜃𝑑  has an adverse effect on the ulti-
mate shear strength even though this effect becomes 
negligible for angles close to 45°. 

3. Conclusions 

The (AISC, 2016) and (CSA, 2009) codes include equa-
tions for the prediction of the critical buckling load and 
the ultimate shear stress of plate girders. However due 
to the formulation of these equations it is not easy to 
identify the effect of slenderness and span-to-depth ratio 
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on the structural performance even though the infor-
mation about the effect of these parameters is indirectly 
included in these equations. The aim of this study is to clar-
ify the effect of these geometric variables on the structural 
performance. To this end, a parametric study was carried 
out that calculated the critical buckling load and the ulti-
mate shear stress for a wide range of web and flange slen-
derness as well as span-to-depth ratio values. As a result, 
increasing both the flange and the web slenderness ratios 
were found to have a favorable effect on the critical buck-
ling moment. The effect of the web plate slenderness on 
the ultimate shear stress was also investigated. The visual-
ization of the results showed that the effect of the web 
plate slenderness on the ultimate shear stress depends on 
the web plate thickness. For small web plate thicknesses 
an increase in web plate slenderness is observed to be fa-
vorable whereas for larger thicknesses increasing the web 
plate slenderness adversely affects the ultimate shear 
strength. Finally, the effect of the plate diagonal angle on 
the ultimate shear stress was visualized and this variable 

was found to have a significant effect on the structural per-
formance only for angle values less than about 25°. Also, 
this variable is observed to have a greater effect on the 
structural performance for larger web plate thicknesses. 

This study was concerned with the sensitivity of the 
structural performance to changing cross sectional 
properties of plate girders related to slenderness and 
span-to-depth ratio. Knowing the effect these parame-
ters have on the structural performance can be a great 
advantage for practicing design engineers. In the ab-
sence of clearly documented information about the rela-
tionship between geometric properties such as slender-
ness and the structural performance more sophisticated 
optimization techniques need to be used in the struc-
tural dimensioning process. Further research in this field 
can be carried out to investigate the effect of material 
properties such as yield stress and elasticity modulus as 
well as other cross-sectional properties such as the 
warping constant and the St. Venant torsion constant on 
the structural performance.

 
Fig. 9. The variation of 𝜏𝑢 with respect to 𝜃𝑑.

Appendix 

Torsional section properties of a doubly symmetric I-
section (Kulak and Grondin, 2002).  
 
St. Venant’s torsion constant: 

𝐽 =
2𝑏𝑓𝑡𝑓

3+(𝐷+𝑡𝑓)𝑡𝑤
3

3
  

Warping constant:  

𝐶𝑤 =
(𝐷+𝑡𝑓)

2
𝑏𝑓

3𝑡𝑓

24
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